Flow Coefficient Calculations

Flow of Liquid

$$Q = C_{V} \sqrt{\frac{\Delta P}{SpGr}}$$

or

$$\Delta P = \frac{(Q)^2 (SpGr)}{(C_V)^2}$$

Where:

Q = Flow in US gpm

 ΔP = Pressure drop (psig)

SpGr = Specific gravity at flowing

temperature

 C_V = Valve constant

Flow of Gas

$$Q = 1360 \text{ C}_{V} \sqrt{\frac{(\Delta P) (P_2)}{(SpGr) (T)}}$$

or

$$\Delta P = \frac{5.4 \times 10^{-7} (SpGr) (T) (Q)^2}{(C_V)^2 (P_2)}$$

Where:

Q = Flow in SCFH

 ΔP = Pressure drop (psig)

SpGr = Specific gravity (based on air = 1.0) P_2 = Outlet pressure-psia (psig + 14.7)

T = (temp. °F + 460)

 C_V = Valve constant

